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On the Constant Pressure Specific 
Heat C, of a Simple Fluid? 
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(Received February 2 5 ,  1983) 

Calculation of C, from a model soft-core equation of state reveals a line in the phase diagram 
on which C ,  IS  equal to its zero pressure value C,,,. This line commences on the temperature axis 
whcre the second virial coefficient has a point of inflexion. At higher tcmperatures (and pressures) 
C ,  falls below C,". The detailed behavlour of C, is presented via contour maps, illustrating 
the effects of changing the exponent N ( = 3 / n ,  where II is the repulsive potential exponent) 
which parameterizes the model. For soft-core fluids at high temperatures C ,  deviates only 
slightly from the ideal gas value over a wide range of temperature and density, in marked 
contrast to the behaviour of hard-core models. 

1 INTRODUCTION 

In order to obtain a qualitatively correct description of the constant pressure 
specific heat C p  of a simple fluid at high temperatures it is necessary to take 
into account the effective softening of the molecular hard core, or penetration 
of the repulsive part of the intermolecular potential.' Calculation of C,, 
in this paper, from a model equation of state reveals a line in the phase diagram 
along which C, maintains the same value as it would have at zero density: 
Cpo.  For a structureless monatomic system C,, would equal 3R. This line 
commences on the temperature axis at the temperature TD (typically 50 x 
Boyle temperature) at which the second virial coefficient has a point of 
inflexion. At higher temperatures (and pressures) C p  falls below its ideal gas 
value, whereas at lower temperatures C p  increases with pressure along 
isotherms. Such a behaviour has been observed (indirectly) for Helium in 

t Work supported in part by the Natural Sciences and Engineering Research Council of 
Canada, Grant No. A6595. 

81 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
4
7
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



82 J .  STEPHENSON, K. McGREER AND G .  MACLEOD 

the vicinity of 200°C by Roebuck and O ~ t e r b e r g ~ - ~  using C p  values derived 
from the Joule-Kelvin coefficient p :  

P = (g)H = & [ T(%), av - v]. 

The detailed behaviour of C ,  described by our model may be presented 
compactly, and hence easily appreciated, via contour maps drawn in the 
density vs. temperature diagram, from which it  is clear that a hard-core 
equation of state is inadequate at high temperatures. In the next section we 
provide a brief account of the model, followed in Section 3 by the calculation 
of C p ,  and adiscussion ofthe theoretically possible behaviour ofthe C p  = Cp, 
locus. 

2 EQUATION OF STATE 

We adopt an equation of state of the Guggenheim,’ Longuet-Higgins, 
Widom6 form 

P = RTp+(bp) - up2 (2) 

where a and b are van der Waals’ parameters. The volume b has the constant 
value h, for a hard-core model, and is permitted to be temperature dependent 
for a soft-core model. The specific form of the function $J depends on the 
choice of the underlying hard-core model. In terms of scaled variables 

x = 4y = by, 

d = bop, 

a 

b;P p = -  
a 

the equation of state becomes 

p = dt+(x) - d2 .  

The leading terms in the exact hard-sphere expansion of $(x) are 

5 
8 

+(x) = 1 + x + Ax2 + ..., with A = - .  
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SPECIFIC HEAT OF A FLUID 

In this paper we will use the Frisch model' form for $(x), which agrees with (5) 
up to terms of order x': 
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Also we choose a simple form for the temperature dependence of h:  

b = -  b0 " 
t N  ' (7) 

where LY is apositive constant, and the exponent N lies in the range 0 I N < f, 
so the corresponding repulsive potential exponent n = 3," exceeds 6. When 
N = 0 we retrieve the hard-core case. The resulting equation of state is then 
essentially a model generalization of the soft-sphere equation of state of 
Hoover ct ul. augmented by an attractive van der Waals (up') cont r ib~t ion .~  
Then the second and third virial coefficients in the virial expansion 

- - 1  + B p + C p Z + . -  
pRT - dt 

have the especially simple forms 

Sometimes it is preferable to scale the density, temperature and pressure by 
their critical values. For an equation of state of the form (4) the critical 
parameters d,, t,, p ,  are related to their values for the underlying hard-core 
case, x,, t,,, p c 0 ,  by 

d, = X, (?) - , t ,  = t,, re), Pc = 

where b, is the critical value of b in (7). For the Frisch model, xc = 0.514668, 
t,, = 0.375312 and p,, = 0.069510. Consequently we identify 

Next it is convenient to set 

(12) 
t2b  
b 

11' =-, 
h, tb 

u g = - ,  M I = -  bt h '  
where ' denotes temperature differentiation with respect to t. For the special 
form of h in (7) 
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Then, for example, in terms of scaled variables 

J .  STEPHENSON, K. McGREER A N D  G. MACLEOD 

p = d"4, - u,.x], 

-- ap - t[d, + xd,' - 2u,x], an 

'p = d[($ + X($'U1]. 
at 

More detailed discussion of the equation of state (4) and an alternative 
derivation of the above properties has been published previously.8 

3 SPECIFIC HEATS, C, AND C, 

Let Cv, and Cp,  denote the zero density values of the constant volume and 
constant pressure specific heats. For the special case of a structureless 
monatomic system we can assume 

independent of temperature. Now from elementary thermodynamics, at a 
density p, by integration along an isotherm at a temperature ?: 

and 

On substituting the equation of state (4), via (14), one obtains explicitly 

cv = cv, + R[fl(u: - 2u, - u z )  - u:.Y4']; 
Nd, + xd'u,I2 ___ C =  

[ d ,  + xd,' - 2u,x] 

where the initial values 4(0) = $'(O) = 1 are required. It is now elementary 
to calculate a grid of values of Cv and C p  in the density vs. temperature 
diagram, and hence plot the contours which are presented in Figures 1-8. 
Our model attempts to  describe the high temperature fluid above its critical 
point, over a density range which would be cut-off by the liquid branch of 
the fusion curve across the upper lefthand corner of each figure. (On the 
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FIGURE I Contours of the constant volume specific heat C, for the Frisch model with 
N = I/h on a scaled diagram of density vs. logarithm of temperature. pc and T, are the critical 
density and temperature respectively. Contours are labelled with values of (C, - C,,)/R. 

1 
0 1  

N= 0.0 --- 

FIGURE 2 Contours of the constant pressure specific heat C, for the hard-core Frisch model 
with N = 0, on a scaled diagram ofdensity vs. logarithm of temperature. Contours are labelled 
with values of (C, - C,,)/R. 
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FIGURE 3 C ,  contours as Figure 2, for a soft-core Frisch model with N = 119 

7.0 N =V6 

0.0 
0. I 

FIGURE 4 C,  contours as Figure 2, for a soft-core Frisch model with N = 1/6. 
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FIGURE 5 
which the C, = C,,, contour has vertical slope at the temperature axis. 

C, contours as Figure 2, for soft-core Frisch model with N = 0.157389.. . for 

FIGURE 6 C, contours as Figure 2, for a soft-core Frisch model with N = 0.2105 for which 
the locus of C, extrema along isotherms is at a saddle point, as explained in Ref. 8. 
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FIGURE 7 C, contours as Figure 2, for a soft-core Frisch model with N = 0.22. 

p/ 
P, 

3.0 1.0 LOG ,o ( T/ Tc ) 
0.0 

QI 
FIGURE 8 C, contours as Figure 2, for a soft-core Frisch model with N = 0.25. 

xu 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
0
8
:
4
7
 
2
8
 
J
a
n
u
a
r
y
 
2
0
1
1



SPECIFIC HEAT OF A FLUID 8Y 

liquid branch of the fusion curve p/p, - 3.5 at the critical temperature, 
and varies roughly like ( T / K ) N  at high temperatures.) 

The steady variations of Cv (Figure 1) and of C p  in the hard-core case 
(Figure 2) are not very exciting. However, for the soft-core models, C p  
maintains its zero density value C p ,  along a line extending across the phase 
diagram, as remarked in the introduction. This line commences on the 
temperature axis at a temperature T, where the second virial coefficient 
B has a point of inflexion, so B = 0. Expanding in powers of pressure, we 
have 

PI/  = RT + B’P + C‘P2 + * . .  (19) 
where the primed pressure virial coefficients are algebraically related to the 
density virial coefficients by 

Then one finds 

whence on integration along an isotherm at a temperature T 

1 
Clearly C p  = Cp,  on the temperature axis where B = 0. (The dot . denotes 
d/dT here). The initial slope of the line along which C p  = CPg is positive 
for small values of N, whereas for larger soft-core values of N the initial slope 
is negative. The change in the sign of the initial slope occurs when C’ = 0 at 
T,, which is the case when N is given by the cubic equation 

( N  + 1) 1 - - - A(2N + 1) = 0 [ (321 
with M = 1. As was remarked in a note added in proof to an earlier paper, 
Eq. (23)  determines the special N values at which C = 0 at T, for any model 
with second and third virial coefficients of the form 

where 
1 

N 
O S N < 1  < M < - - .  
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When M = 1 ,  the relevant solution of the cubic is N = 0.157389. .. so 
n = 3/N = 19.0609. . . , and when M = 2 (for example, as it does in Berthelot’s 
equation of state) the relevant solution is N = 0.262322. . . , so n = 1 1.4363. . . . 

The reader may wish to compare the qualitative behaviour of C p  ex- 
hibited by contours constructed here with the discussion of loci of extrema 
of C p  along isotherms, published previously.8 The special value of N re- 
marked on above is of course the same as that at which the slope of the C p  
extrema loci changes sign at To. 

CONCLUDING REMARKS 

The presentation of C p  data in the form of contours has the advantage that 
both the density and temperature dependence can be ascertained directly. 
By overlaying a grid of isobars one could examine the pressure dependence 
too. It is worth noting that for soft-core models at high temperature Cp 
deviates only slightly from the ideal gas value over a wide range of density. 
Consequently the neglect of the pressure dependence of C p  in, for example, 
the interpretation of the Joule-Kelvin coefficient obtained from isenthalpic 
throttling data, is to some extent justified. 
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